Image Classification for Automated Image Cross-Correlation Applications in the Geosciences
نویسندگان
چکیده
منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملDiffeomorphic Image Registration with Cross - Correlation : Evaluating Automated Labeling
Avants et al.’s goal in writing this paper is to propose a new deformable registration method and compare it to existing methods using brain MRI data. The method they propose is called symmetric image normalization (SyN). The method is meant to achieve better registration by maximizing cross correlation within the space of diffeomorphic maps, and the authors provide the Euler-Lagrange equations...
متن کاملCross-domain CNN for Hyperspectral Image Classification
In this paper, we address the dataset scarcity issue with the hyperspectral image classification. As only a few thousands of pixels are available for training, it is difficult to effectively learn high-capacity Convolutional Neural Networks (CNNs). To cope with this problem, we propose a novel cross-domain CNN containing the shared parameters which can co-learn across multiple hyperspectral dat...
متن کاملOn Image Classification: Correlation v.s. Causality
Image classification is one of the fundamental problems in computer vision. Owing to the availability of large image datasets like ImageNet and YFCC100M, a plethora of research has been conducted to do high precision image classification and many remarkable achievements have been made. The success of most existing methods hinges on a basic hypothesis that the testing image set has the same dist...
متن کاملNovel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform
In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2019
ISSN: 2076-3417
DOI: 10.3390/app9112357